אילו גורמים משפיעים על מכפילי הרווח? והפעם: מכפיל רווח נקי

אז אחרי שכיסינו את המכפילים התפעוליים, הגיעו הזמן לדבר קצת על המכפילים ההוניים, שלמרבה הצער נמצאים בשימוש לא מועט בפרקטיקה. אני אומר צער, מאחר ומלבד קלות השימוש היחסית בהם, המכפילים ההוניים לא מספקים שום יתרון על המכפילים התפעוליים, בעוד שיש להם מספר חסרונות. לכן, אנו נסקור את מכפיל הרווח הנקי בפוסט זה.

הגורמים המשפיעים על מכפיל הרווח הנקי (PE Multiple)

כזכור לנו, מכפיל הרווח הנקי מחושב כשווי השוק של החברה חלקי הרווח הנקי שלה, ולכן, על-מנת שנוכל לזהות את הגורמים המשפיעים על מכפיל הרווח הנקי, נרצה קודם כל לקשר בין שווי ההון העצמי (Market Cap) והרווח הנקי. תחת ההנחה ששיעור הצמיחה הצפוי הוא קבוע, נוכל להגיע לביטוי הבא:

\text{Market Cap}=\frac{FCFE_{t+1}}{r_E-g}=\frac{NI_{t+1}\times (1-RR_E)}{r_E-g}

כאשר RRe (שיעור ההשקעה בהון העצמי) מחושב כסך כל ההתאמות שיש לבצע לרווח הנקי בכדי לחשב את תזרים המזומנים לבעלי המניות, מחולקות ברווח הנקי לאותה שנה. כלומר, שיעור ההשקעה בהון העצמי איננו כולל רק את ההשקעה בפעילות, אלא בהון העצמי של החברה.

לכן:

RR_E=\frac{Capex-Depreciation+\Delta WC+\Delta Debt}{NI}

\Downarrow

\frac{\text{Market Cap}}{NI_{t+1}}=\frac{(1-RR_E)}{r_E-g}=\text{PE Multiple}

כשהביטוי האחרון הוא, כמובן, מכפיל הרווח.

אז מתי יהיה לחברה מכפיל רווח נקי גבוה מזה של קבוצת ההשוואה שלה?

  • שיעור הצמיחה שלה גבוה יותר,
  • מחיר ההון העצמי שלה נמוך יותר,
  • רמת השקעות (בהון העצמי) הנדרשת בכדי לתמוך בצמיחה נמוכה יותר (מקביל לקיומה של תשואה גבוהה על ההון העצמי).

הבא נתעכב לרגע על מחיר ההון העצמי. בניגוד ל-WACC, מחיר ההון העצמי מאוד רגיש לשינויים  ברמת המינוף, ואנו נראה כעת כי זו הסיבה שמכפיל הרווח הנקי איננו כלי מומלץ לחישוב שווי ההון העצמי.

ראשית, נזכור כי מודליאני ומילר (1963) הראו כי מחיר ההון העצמי עולה יחד עם שיעור המינוף:

r_E=r_A+\frac{D}{E}(r_A-r_D)

כאשר יש כאלה שזוכרים את המסקנה הזו בעיקר דרך מינוף הביטא (כאשר מניחים שהביטא על החוב היא אפס):

\beta_E=\beta_A (1+\frac{D}{E})

בואו ונראה כיצד העניין הזה משתקף בדוגמה פרקטית. נתונה חברה א', אשר יותר ממונפת מהענף שאליו היא שייכת, ודומה לו בכל שאר הפרמטרים התפעולים (צמיחה, WACC, שיעור השקעות וכו'. אגב, אם היא שונה ברמת המינוף שלה, גם ה-WACC שלה אמור להיות שונה, אבל זה די שולי אז נתעלם מכך ונניח כי גם ה-WACC שלה זהה לזה של הענף).

  • מכפיל הרווח הנקי הענפי הינו \frac{9,000}{9.75}=9.23.
  • שווי השוק של החברה המוערכת צריך לכאורה להיות: 800\times 9.23=7,384.
  • אבל, אנחנו יודעים שהחברה זהה לענף בכל המאפיינים התפעוליים שלה, ולכן עלינו להשתמש במכפיל הרווח התפעולי (\frac{9,500}{1,000}=9.5) על-מנת לחשב את שווי השוק שלה: 9.5\times 1,000-4,000=5,500.
  • מסקנה: מינוף פיננסי משפיע על מכפיל הרווח הנקי כלפי מטה: \frac{5,500}{800}=6.875.

חברות ממנופות יותר ייראו זולות יותר כיוון שיהיו בעלות מכפיל רווח נמוך יותר מזה הענפי, אך לתמחור הנמוך יש סיבה: השוק מפנים את הסיכון הפיננסי הגלום ברמת מינוף גבוהה מהמקובל.

מכפילי הרווח התפעוליים פחות רגישים להבדלים במינוף ואנו נעדיף את השימוש בהם כאשר ישנו הבדל במינוף בין החברה המוערכת וקבוצת ההשוואה.

סיכום

  • מטרתה של כל הערכת שווי היא למצוא את השווי ה"נכון" ביותר של החברה המוערכת; אנו מכנים שווי זה בכינוי "שווי פנימי".
  • לצורך מציאת השווי הפנימי, ייתכן שנבחר להשתמש בגישת השוק, בה תמחור החברה נעשה באופן עקבי עם האופן שבו השוק מתמחר חברות דומות. השימוש בגישת השוק לצורך מציאת השווי הפנימי מניח כי השוק עלול לטעות בתמחור של נכס בודד, אבל בממוצע הוא צודק.
  • השוק לא מספר לנו מהם הפרמטרים שבהם הוא משתמש לקביעת שווי השוק הנצפה, אז בכדי להפיק את השווי המבוקש עלינו להסתכל על "שורות תחתונות".
  • בדרך כלל, נהוג להסתכל על האופן שבו השוק מתמחר את שוויין של חברות ביחס לרווח כלשהו שהן מפיקות. הפרמטר הזה מכונה לעיתים קרובות בשם "מכפיל".
  • חשוב מאוד להכיר את הגורמים המשפיעים על כל סוג מכפיל, מאחר ואם הם אינם דומים ("מייצגים") בין קבוצת ההשוואה לחברה המוערכת, האומדן שנקבל עבור השווי הפנימי יהיה אומדן מוטה. בהתאמה, גם הרווח בו נשתמש צריך לייצג נאמנה, בממוצע, את הרווח הצפוי לחברה.
  • התוצאה הסופית שנקבל, כאמור, היא השווי הפנימי של החברה.
  • חסרונה העיקרי של שיטת המכפילים נעוץ בחוסר הגמישות המסוים בקביעתם של הפרמטרים המשפיעים על שוויה של חברה (צמיחה, מרווח תפעולי, תשואה על השקעות וכו'). ההנחה שלנו היא שמכפיל רווח מייצג והרווח המייצג בו אנו משתמשים מגלמים בתוכם את הפרמטרים הללו, אבל לא תמיד נוכל להסתפק בכך.
  • חסרונה העיקרי של שיטת המכפילים נעוץ בחוסר הגמישות המסוים בקביעתם של הפרמטרים המשפיעים על שוויה של חברה (צמיחה, מרווח תפעולי, תשואה על השקעות וכו'). ההנחה שלנו היא שמכפיל רווח מייצג והרווח המייצג בו אנו משתמשים מגלמים בתוכם את הפרמטרים הללו, אבל לא תמיד נוכל להסתפק בכך.
  • לסיכום, הערכת שווי בשיטת המכפילים היא השיטה הנפוצה ביותר בקרב משקיעים בשוק ההון, ולא בכדי. היא פשוטה, יעילה וכאשר היא מיושמת בצורה הנכונה, יתרונותיה גוברים על חסרונותיה.
  • כמעריכי שווי, רצוי שנכיר את השיטה ונשמור אותה בארגז הכלים שלנו למקרה הצורך, אך יש לזכור כי שיטת היוון תזרימי מזומנים לעולם תהווה את הדרך המועדפת ביותר להעריך את שווייה הפנימי של חברה בצורה הנכונה ביותר.

 

מכפיל רווח תפעולי - אופן החישוב וגורמים המשפיעים עליו

כל כך הרבה פעמים אנו רואים בפרקטיקה ניתוח שכותב אנליסט העושה שימוש במכפילי רווח לשם הוכחת טענתו. אבל, במרבית המקרים אותו מכפיל איננו מספק הסברים אפשריים להבדלים שהוא מצא מלבד "מדובר בהזדמנות קנייה". בפוסט זה, אתחיל בסקירה קצרה של המכפילים בהם אנו משתמשים, אמשיך בסקירה של הגורמים המשפיעים על כל אחד מהם, דרך דוגמה מספרית קלילה, ואסיים בסיכום של החומר שלמדנו.

מבוא לחישוב מכפילים

ככלל, ישנם שלושה סוגים עיקריים של מכפילי רווח:

  1. מכפילי רווח תפעוליים,
  2. מכפילי רווח הוניים,
  3. מכפילי רווח יצירתיים.

הסוג האחרון פחות מעניין ומבוסס תיאורטית, ולכן נשאיר אותו לפוסט אחר, אם בכלל.

בשביל להבין את ההבדל בין שני סוגי המכפילים הראשונים שסקרנו, חשוב לזכור שני דברים בנוגע למבנה הון של חברה והרווחים שהיא מייצגת.

ראשית, זכרו כי פעילות החברה ממומנת באמצעות שני גורמים עיקריים, הון עצמי וחוב פיננסי:

בהתאמה, ניתן "לשייך" את הרווחים שאותה פעילות מייצרת לאותם שני גורמים, באופן הבא:

הכנסותשייך לשני בעלי ההון בחברה (בעלי המניות ובעלי החוב)
(עלות המכר)
רווח גולמי
(הוצאות תפעוליות, לא כולל הוצאות פחת)
EBITDA
(הוצאות פחת)
EBITA
(הפחתות של נכסים בלתי מוחשיים)
רווח תפעולי (EBIT)
(הוצאות מימון)שייך לבעלי החוב
רווח לפני מסשייך לבעלי המניות
(הוצאות מסים)
רווח נקי

 

כל השורות שמעל הרווח התפעולי, כולל, "שייכות" לשני בעלי ההון, כלומר לבעלי המניות ולבנקים ומלווים אחרים (בעלי הון זר). הוצאות המימון "הולכות" לבעלי ההון הזר, ולכן מה שנשאר לאחר שהן שולמו, כלומר הרווח לפני מס והרווח הנקי, שייכים לבעלי המניות.

כמו-כן, אנחנו יודעים שבדרך כלל מכפיל רווח מחושב באופן הבא:

\text{Multiple}=\frac{\text{What you pay for the asset}}{\text{What you get from the asset}}

ולכן,

  • מכפילים תפעוליים יחושבו כאשר במונה שלהם שווי השוק של הפעילות (EV). כידוע, שווי השוק של הפעילות איננו נצפה בשוק. מה שכן נצפה הוא שווי ההון העצמי (Market Cap), ולכן, בכדי לקבל את שווי הפעילות אנו מוסיפים לשווי ההון העצמי את שווי החוב הפיננסי (נטו. אפשר גם להוסיף את החוב הפיננסי ברוטו ולהפחית נכסים פיננסים כמו מזומן) ומפחיתים נכסים עודפים (אם ישנם) בכדי לקבל את שווי הפעילות. מכיוון שהפעילות שייכת לשני סוגי בעלי ההון, כדי לשמור על עקביות, נשים במכנה של המכפילים התפעוליים את אחד מהרווחים ששייכים לשניהם, כגון: הכנסות, EBITDA, רווח תפעולי וכו'.
  • מכפילים הוניים מעט יותר קלים לחישוב, מאחר והמונה פשוט יותר לחישוב - זהו פשוט שווי המניות של החברה (הטיפול באופציות הינו סבוך יותר ואני אשתדל להעלות פוסט קצר בנושא בקרוב). המכנה יהיה כאמור גודל השייך לבעלי המניות ולכן נהוג להציב את הרווח הנקי.

יישור קו וסיכום ביניים

לפני שנמשיך, תזכורת: אנו רוצים לחשב את שוויה "האמיתי" של החברה – Intrinsic Value, ושני כלי העזר שלנו הוא המכפיל "האמיתי" שלה (מכפיל מייצג), והרווח המייצג שלה, שהוא הרווח הממוצע שאנו צופים שתרוויח בעתיד. בפוסט קודם נגענו קצת בנקודה הזו, כעת נרחיב את היריעה אודות חישוב המכפיל המייצג.

כידוע, המתודולוגיה הכללית בה נשתמש הינה:

  1. בחירת המדגם להשוואה - איתור עסקאות או חברות דומות.
  2. קביעת הבסיס להשוואה - מציאת בסיס נאות להשוואת גודלם היחסי של העסקאות / החברות הדומות והחברה אותה אנו מעריכים, למשל: רווח תפעולי.
  3. גזירת המכפיל המייצג  - חישוב מכפיל ממוצע עבור העסקאות / החברות הדומות (היחס בין השווי לבסיס להשוואה), למשל: חישוב מכפיל רווח תפעולי – EV/EBIT.
  4. קביעת הבסיס להשוואה בחברה אותה אנו מעריכים, למשל: הרווח התפעולי המייצג בחברה שלנו.
  5. חישוב השווי - הפעלת המכפיל (משלב 3) על הבסיס להשוואה בחברה אותה אנו מעריכים (משלב 4).

הגורמים המשפיעים על מכפילי הרווח

אז מה משפיע על מכפילי הרווח? נגיד ואנו מתלבטים האם לקנות דירה בגודל 100 מ"ר בשכונה מסוימת, בה המחיר הממוצע למ"ר הוא 25,000 ש"ח. אם נסכים לשלם 2,500,000 ש"ח, ההנחה הגלומה בכך היא שהדירה שלנו דומה בכל מאפייניה לדירות שאיתן חושב המחיר הממוצע. האמת היא שייתכן גם שיש צדדים בהם הדירה עדיפה וצדדים שבהם היא פחות עדיפה, כך שבשורה התחתונה היא כמו כל הדירות בשכונה, אבל נשים את זה בצד כרגע.

די קל לחשוב על הגורמים שמשפיעים על מחירי הדירות (רעש, קרבה למוסדות חינוך וכו'); מהם לדעתכם הגורמים המשפיעים על מכפיל הרווח?

הגורמים המשפיעים על מכפיל רווח תפעולי (EV/EBIT)

על-מנת שנוכל לענות על השאלה הזו, נרצה קודם כל לקשר בין שווי הפעילות (EV) והרווח התפעולי. תחת ההנחה ששיעור הצמיחה הצפוי הוא קבוע, נוכל להגיע לביטוי הבא:

EV=\frac{FCF_{t+1}}{WACC-g}=\frac{EBIT_{t+1}\times (1-t)\times (1-RR)}{WACC-g}

כאשר, כזכור לנו, RR הוא פרמטר המכונה שיעור ההשקעה ומחושב כסך ההשקעות נטו שחברה מבצעת מתוך הרווח התפעולי לאחר מס שלה:

RR=\frac{Capex-Depreciation+\Delta WC}{EBIT\times (1-t)}

אם נחלק את הביטוי ברווח התפעולי בשנה הבאה, נקבל כי מכפיל הרווח שווה ל:

\frac{EV}{EBIT_{t+1}}=\frac{(1-t)\times (1-RR)}{WACC-g}

מתי מכפיל הרווח התפעולי של חברה יהיה גבוה מזה של קבוצתההשוואה (כאשר מחזיקים את יתר הפרמטרים קבועים)?

  • שיעור מס נמוך יותר,
  • שיעור היוון נמוך יותר,
  • שיעור צמיחה גבוה יותר,
  • רמת ההשקעות הנדרשת בכדי לתמוך בצמיחה נמוכה יותר (מקביל לקיומה של תשואה גבוהה על ההשקעות).

הגורמים המשפיעים על מכפיל ה-EBITDA (EV/EBITDA). הפיתוח באדיבות ד"ר אורי רונן

בהסתמך על המשוואה הקודמת:

\frac{EV}{EBIT_{t+1}}=\frac{(1-t)\times (1-RR)}{WACC-g}

והוספת פרמטר חדש בשם "קצב הבלאי", המחושב כאחוז הוצאות הפחת מתוך ה-EBITDA:

Depreciation Ratio=\frac{Depreciation}{EBITDA}

נקבל כי מכפיל ה-EBITDA שווה לביטוי הבא:

\frac{EV}{EBITDA_{t+1}}=\frac{(1-t)\times (1-RR)\times (1-Dep. Ratio)}{WACC-g}

כלומר, הגורמים המשפיעים על מכפיל ה-EBITDA הם אותם הגורמים המשפיעים על מכפיל הרווח התפעולי, בתוספת קצב הבלאי. כאשר מחזיקים את יתר הגורמים קבועים, לחברה שקצב הבלאי שלה גבוה מזה של החברות האחרות בענף, יהיה מכפיל EBITDA נמוך יותר מזה הענפי.

מה דעתכם? מה לגבי מכפיל הרווח התפעולי שלה?

 

הגורמים המשפיעים על מכפיל המכירות (EV/Sales)

בהסתמך על המשוואה הקודמת:

EV=\frac{EBIT_{t+1}\times (1-t)\times (1-RR)}{WACC-g}

נחלק את שני צדי המשוואה במכירות הצפויות לשנה הקרובה נקבל כי:

\frac{EV}{Sales_{t+1}}=\frac{\frac{EBIT_{t+1}}{Sales_{t+1}}\times (1-t)\times (1-RR)}{WACC-g}

רווח תפעולי חלקי מכירות שווה לרווחיות התפעולית, ולכן:

\frac{EV}{Sales_{t+1}}=\frac{\text{Operating Margin}_{t+1}\times (1-t)\times (1-RR)}{WACC-g}

כלומר, הגורמים המשפיעים על מכפיל המכירות הם אותם הגורמים המשפיעים על מכפיל הרווח התפעולי, בתוספת המרווח התפעולי. כאשר מחזיקים את יתר הגורמים קבועים, לחברה שהמרווח התפעולי שלה נמוך יותר מזה של החברות האחרות בענף, יהיה מכפיל מכירות נמוך יותר מזה הענפי.

ומה לגבי מכפילי הרווח התפעולי וה-EBITDA שלה?

מסקנה (חשובה)

שלושה גורמים עיקריים משפיעים על שווי הפעילות:

  1. תזרים המזומנים החופשי,
  2. שיעור הצמיחה,
  3. שיעור ההיוון (WACC).

כמו-כן, אנחנו יודעים שכך בד"כ מחשבים את תזרים המזומנים החופשי:

מכירות
(הוצאות תפעוליות ללא פחת)
EBITDA
(הוצאות פחת)
רווח תפעולי
(הוצאות מסים)
רווח תפעולי לאחר מס (NOPLAT)
(+) הוצאות פחת
(-) השקעות הוניות
(-) השקעה בהון חוזר
תזרים מזומנים חופשי לפעילות

 

ומה המסקנה?

בנוסף ל-WACC ו-g, הגורמים המשפיעים על מכפיל רווח מסוים הם הגורמים הנמצאים מתחת למכנה שלו, והם הגורמים שאנו צריכים להיות ערים אליהם כאשר אנו משתמשים במכפיל הרווח.
למשל, אם נעריך חברה באמצעות מכפיל רווח תפעולי, לא יפריע לנו שהמרווח התפעולי שלה נמוך יותר מזה הענפי, אבל מאוד ישנה לנו אם שיעור ההשקעה שלה שונה משיעור ההשקעה הענפי. מדוע? כי העובדה שיש לה מרווח תפעולי נמוך יותר כבר מתבטאת בכך שיש לה רווח תפעולי נמוך יותר.

לסיכום, בנוסף לשיעור ההיוון ושיעור הצמיחה,

  • הגורמים המשפיעים על מכפיל הרווח התפעולי הם שיעור ההשקעות ושיעור המס,
  • הגורמים המשפיעים על מכפיל ה-EBITDA הם קצב הבלאי, שיעור המס ושיעור ההשקעות,
  • הגורמים המשפיעים על מכפיל ההכנסות הם המרווח התפעולי, שיעור המס ושיעור ההשקעות.

שאלות לתרגול

  1. לפי לדעתכם צפוי השוק להעניק מכפיל רווח תפעולי גבוה יותר, שופרסל או רמי לוי? מדוע?
  2. (באדיבות ד"ר אורי רונן) בראשית שנות ה-2000 חברת פלאפון הפחיתה במאזנה שתי רשתות סלולריות, עקב השקעה לא מוצלחת ברשת הראשונה שבנתה. תחת ההנחה שמעתה ואילך היא תתחזק רשת אחת בלבד, באיזה מכפיל הייתם משתמשים על-מנת לתמחר אותה? למה?
  3. נתון שוק בשיווי משקל. השלימו את הטבלה השנייה, תוך הנחה כי שיעור הצמיחה וה-WACC זהים עבור כל החברות בענף. הסבירו את המכפילים שהתקבלו.

נתונים בסיסיים:

חברה מוערכתהענף
מכירות100100
הוצאות (ללא פחת)(70)(50)
הוצאות פחת(10)(10)
רווח תפעולי2040
הוספת פחת1010
הפחתת השקעות הוניות(15)(20)
תזרים מזומנים חופשי מפעילות1530

כעת, השלימו את סימני השאלה בטבלה הבאה והסבירו את תוצאות התוצאות שקיבלתם.

חברה מוערכתהענף
מרווח תפעולי??
קצב הבלאי??
שיעור ההשקעות??
EV?150
מכפיל FCF?5
מכפיל מכירות??
מכפיל רווח תפעולי??
מכפיל EBITDA??

בהצלחה בתרגול, בפוסט הבא נדבר על מכפילים הוניים ונעשה סיכום של כל החומר עליו דיברנו עד כה.

אלטרנטיבות למודל ה-CAPM: מודל ה-APT

לא מעט אלטרנטיבות למודל ה-CAPM הוצגו במרוצת השנים, רובן מוסיפות את ההתחשבות בגורמים נוספים שמשפיעים על קבלת ההחלטות של משקיעים, כמו מסים או הכנסה עתידית; בין הבולטים שבהם היה זה של Black (1972), בו הוא פיתח גרסה ל-CAPM שבה שיעור הריבית ללווים ולמלווים לא חייב להיות שווה לריבית חסרת סיכון (Black’s Zero-Beta CAPM),[1] וזה של Merton (1973), בו המשקיעים משקללים בהערכות שלהם לא רק את התקבולים שיישארו בידיהם בסוף התקופה, אלא גם את הזדמנויות ההשקעה והצריכה שצפויות להתקיים בסופה. מודל זה היה ידוע בכינוי ICAPM – Intertemporal CAPM.[2]

עם כל הכבוד למודלים האלטרנטיביים שהוצעו, אין ספק כי האלטרנטיבה הבולטת ביותר הינה מודל ה-APT (Arbitrage Pricing Theory), שפורסם על ידי Stephen Ross בשנת 1976.[3] בקצרה, מודל ה-APT מתבסס על הנחת היעדר הזדמנויות ארביטראז', כלומר שלא ייתכנו שני נכסים זהים הנסחרים במחירים שונים, ותוך שימוש בהרבה פחות הנחות ממודל ה-CAPM הוא מנבא את תוחלת התשואה שיניב נכס i באמצעות המשוואה הבאה:

R_i=a_i+b_{i1}I_1+b_{i2}I_2+\dotsc+b_{ij}I_j+e_i

כאשר:

Ij – הפקטור ה-j שמשפיע על התשואה של נכס i,

bij – מידת הרגישות של התשואה של נכס i לפקטור j,

ai – התשואה המצופה מנכס i כאשר שאר הפקטורים שווים לאפס,

ei – ההפרעה האקראית.

החיסרון המרכזי של המודל הוא שהוא נותן את המסגרת הכללית לקביעת תוחלת התשואה המצופה, מבלי לנקוב בפקטורים שאמורים לסייע במלאכה. כך, החל לו מסע אקדמי בעקבות הפקטורים הנעלמים שאמורים להכניע את מודל ה-CAPM הישן והטוב, ואנו נציין את שני המחקרים הבולטים בנושא.

Chen, Roll & Ross מתחילים בניתוח של הגורמים המשפיעים על תשואתה של מניה, ומחלקים אותם לשני סוגים: הסוג הראשון כולל בתוכו פקטורים המשפיעים על תזרימי המזומנים הצפויים מהמניה, והסוג השני כולל פקטורים המשפיעים על ערכם הנוכחי של תזרימי המזומנים הללו.[4] הם עושים שימוש במתודולוגיה של Fama & McBeth ומוצאים כי ארבעת הפקטורים המקרו-כלכליים שבהם השתמשו (אינפלציה, עקום הריבית, פרמיית הסיכון של אגרות חוב מסוכנות ורמת הייצור התעשייתי) הם בעלי יכולת הסבר מובהקת לתשואותן של מניות. יתרה מכך, כאשר רגרסיית השלב השני לקחה בחשבון גם את הביטא הקלאסית, השפעתה של האחרונה התגלתה כלא מובהקת. Chen, Roll & Ross נמנעים מלהצהיר במפורש כי גילו את הפקטורים המשפיעים על תוחלת התשואה של מניות, אך מכירים בצעד הגדול שביצעו לעבר המטרה הזו.

גישה אחרת למציאתם של הפקטורים הנעלמים היא להשתמש בפקטורים המזכירים במהותם את פרמיית הסיכון הקלאסית ממודל ה-CAPM, ומייצגים בצורה טובה את הגורמים המשפיעים על תשואת המניה שפרמיית הסיכון הקלאסית לא מצליחה. הניסיון המפורסם ביותר מהסוג הזה הוא ניסיונם של Fama & French (1993), בו הם מוסיפים לפרמיית הסיכון הקלאסית שני פקטורים נוספים, התשואה העודפת שהשיגו תיקים מבוזרים של מניות קטנות על פני תיקים מבוזרים של מניות גדולות (Small Minus Big) והתשואה העודפת שהשיגו תיקים מבוזרים, המורכבים ממניות בעלות שווי גבוה יותר של הון עצמי בספרים ביחס לשווי שוק (זהו למעשה מכפיל הון הפוך), על פני תיקים מבוזרים המורכבים ממניות בעלות שווי נמוך יותר של הון עצמי בספרים ביחס לשווי שוק (High Minus Low).[5] כלומר, המודל שהם מציעים הוא מודל הכולל בתוכו שלוש ביטאות, באופן הבא:[6]

E(R_i)=r_f+\beta_{iM}\left[E(R_M)-r_f\right]+\beta_{iS}E(SMB)+\beta_{iH}E(HML)

Fama & French מצאו, כמובן, שלמודל שלהם יכולת חיזוי טובה יותר מהיכולת של מודל ה-CAPM, אך לא כולם קיבלו את התוצאות בהכנעה. הביקורת הידועה ביותר על מאמרם הינה שהבחירה בפקטורים הספציפיים הללו מבוססת על העובדה שאלו הם הפקטורים בעלי המתאם הסטטיסטי הכי חזק לתשואת המניות, ללא כל ביסוס תיאורטי מוצק מאחורי הבחירה הזו (הכינוי לכך בעגה המקצועית הוא Data Snooping). בנוסף לכך, ישנה השקפה שמקורה בכלכלה התנהגותית, לפיה משקיעים נוהגים בהתאם למודל ה-CAPM, אך אי-רציונאליות בקביעת המחירים מביאה לכך שמודל ה-CAPM מופר במציאות; בהמשך לכך, הפקטורים שהוסיפו Fama & French מתואמים עם אי-הרציונאליות הזו ולכן אנו מקבלים שלמודל שלהם יכולת הסבר טובה מזו של ה-CAPM בצורתו הקלאסית. במילים אחרות, Fama & French טוענים שהפקטורים הנוספים "תופסים" סיכון שה-CAPM לא מצליח לתפוס, והכלכלנים ההתנהגותיים סבורים כי הם תופסים את אי-הרציונאליות של המשקיעים. מבחינה תיאורטית, זוהי בעיה די חמורה, מכיוון שלא ברור האם הבעיה ב-CAPM היא בהנחת הרציונאליות של המשקיעים (כפי שסבורים הכלכלנים ההתנהגותיים) או בהנחות אחרות שעליהן הוא מתבסס (כפי שסבורים Fama & French). מבחינה פרקטית, מקור הבעיה פחות חשוב, והדגש הוא על פתרונה; לכן, כל עוד ממצאיהם של Fama & French הם אינם תוצאה של Data Snooping, ניתן להשתמש במודל שלהם לצורך חיזוי מחיר ההון העצמי. מבחנים שבדקו את ביצועיו של המודל של Fama & French בשווקים אחרים מאמתים את יכולותיו, ולכן נראה כי לפחות הבסיס האמפירי שלו נותר איתן. בהקשר זה, ראוי גם לציין גם את המודל של Cahart (1997), שבו נכלל פקטור רביעי, האמור לייצג את אפקט המומנטום.[7] אפקט המומנטום, אותו זיהו Jegadeesh & Titman (1993), הוא כינוי למצב שבו מניה ש"ניצחה את השוק" בשנה מסוימת, תמשיך להציג ביצועים טובים גם בחודשים העוקבים, ולהיפך עבור מניות ש"השוק ניצח אותן".[8] למרות שהמודל של Cahart מניב תוצאות עדיפות על פני זה של Fama & French, נראה כי אורך החיים הקצר של אפקט המומנטום מונע מהמודל להיות כלי עזר ממשי לצורך אמידת מחיר ההון העצמי בהערכות שווי.

אנו נסכם ונאמר כי למרות חולשתו התיאורטית, קשה להתעלם מיכולת הניבוי החזקה של המודל של Fama & French, ולכן אין זה מפתיע שהוא נמצא בשימוש תדיר אצל העוסקים בפרקטיקה בישראל ובעולם.

 

על הקשר שבין מודל ה-CAPM  ומודל ה-APT

לפני שנסיים סקירה זו, ראוי להזכיר כי עצם הווייתם של מודלים מרובי פקטורים לאו דווקא סותר את מודל ה-CAPM. למעשה, במידה וקיימים פקטור יחיד בדמות תיק השוק ונכס חסר סיכון, ניתן להוכיח די בפשטות כי משוואת ה-APT הבאה מתקיימת:

E(R_i)=r_f+\beta_i\left[E(R_m)-r_f\right]

זוהי, כמובן, משוואת ה-SML המוכרת לנו ממודל ה-CAPM.

אבל גם כאשר ישנם פקטורים נוספים, ניתן להוכיח שתחת הנחות מסוימות מודל ה-CAPM עדיין מתקיים, ואנו נראה זאת כעת. נניח כעת כי קיימים שני פקטורים המשפיעים על תוחלת התשואה, באופן הבא:

R_i=a_i+b_{i1}I_1+b_{i2}I_2+e_i

האינדקסים עצמם אינם משנים, הם יכולים להיות מדדי מניות, שיעור האבטלה במשק וכו'. מה שחשוב הוא ההנחה כי אין מתאם בין השאריות של ניירות ערך שונים, כך ש:[10]

E(e_ie_j)=0

כמו-כן, אם ה-APT מתקיים, המשוואה הבאה אמורה להתקיים בשיווי משקל:

E(R_i)=r_f+b_{i1}\lambda_1+b_{i2}\lambda_2

כאשר  היא התשואה העודפת על פני נכס חסר סיכון של תיק בעל ביטא  וחוסר מתאם עם שאר הפקטורים. אם מודל ה-CAPM מתקיים, הוא מתקיים לא רק עבור מניות בודדות, אלא גם עבור תיקים. אם נניח כי ניתן לייצג את הפקטורים באמצעות תיקים, ניתן לומר כי תוחלת התשואה של כל  שווה בשיווי משקל לביטוי הבא, המסתמך על מודל ה-CAPM:

\lambda_1=\beta_{\lambda 1}\left[E(R_m)-r_f\right]

\lambda_2=\beta_{\lambda 2}\left[E(R_m)-r_f\right]

אם נציב את שני הביטויים הללו במשוואת ה-APT, נקבל כי:

E(R_i)=r_f+b_{i1}\beta_{\lambda 1}\left[E(R_m)-r_f\right]+b_{i2}\beta_{\lambda 2}\left[E(R_m)-r_f\right]

E(R_i)=r_f+\left(b_{i1}\beta_{\lambda 1}+b_{i2}\beta_{\lambda 2}\right)\left[E(R_m)-r_f\right]

אם נגדיר כי

\beta_i=b_{i1}\beta_{\lambda 1}+b_{i2}\beta_{\lambda 2}

נקבל כי תוחלת התשואה מנכס i מקיימת את משוואת ה-SML של מודל ה-CAPM:

E(R_i)=r_f+\beta_i\left[E(R_m)-r_f\right]

ההוכחה הזו מדגימה נקודה חשובה. מציאת פקטור נוסף, מלבד תיק השוק, המשפיע בצורה מובהקת על תשואת המניות, איננה מספיקה בכדי לדחות את מודל ה-CAPM. רק אם תוחלת התשואה של אותו פקטור, \lambda_j, שונה באופן מובהק מ- \beta_{\lambda j}\left[E(R_m)-r_f\right], ניתן לומר כי התוצאה סותרת את מודל ה-CAPM. כלומר, ייתכן כי קיימים מספר פקטורים המסבירים יחדיו את השונות המשותפת שבין זוג מניות, ועדיין מודל ה-CAPM יתקיים.

סיכום

קשה לומר כי ה-CAPM בצורתו הקלאסית היה הצלחה אמפירית מפוארת. למעשה, גם הגרסה של Black (1972), שתמכה בעקום SML גבוה ושטוח יותר, הלכה ואיבדה מהרלוונטיות שלה אל מול מחקרים שחשפו עוד ועוד גורמים בעלי יכולת הסבר מובהקת לתוחלת התשואה; אם ה-CAPM לא עובד, יש לכך השלכות על שני תחומים מרכזיים במימון: האחד, הערכות שווי יהיו מוטות עבור חברות שמודל ה-CAPM איננו מתאים עבורן, בגלל שעלות ההון המשוקללת תהיה מוטה. שנית, בחינת ביצועיהם של מנהלי תיקים על סמך התשואה העודפת שהשיגו ביחס ל-SML גם היא תהיה מוטה.[11]

יחד עם זאת, קשה לקבוע בוודאות האם הבעיות האמפיריות של המודל מקורן בעובדה שהוא איננו נכון, בכך שעדיין לא גילינו כיצד ליישם אותו בצורה נכונה,[12] או באקראיות המהווה חלק בלתי נפרד מחיינו.[13]על כל פנים, המודל מהווה אבן דרך בכל הקשר להבנת הקשר שבין סיכון לתשואה, ובאין מודלים ששולטים עליו בצורה מוחלטת, הוא נחשב למודל הנפוץ ביותר לצורך קביעת עלות ההון של חברות, כאשר מגבלותיו היישומיות דורשות מאיתנו להפעיל היגיון בריא בעת השימוש בתוצאות המתקבלות ממנו.


[1] Black, Fischer. 1972. “Capital Market Equilibrium with Restricted Borrowing.” Journal of Business. 45:3, pp. 444–54.

[2] Merton, Robert C. 1973. “An Intertemporal Capital Asset Pricing Model.” Econometrica. 41:5, pp. 867–87.

[3] Ross, Stephen (1976). "The arbitrage theory of capital asset pricing". Journal of Economic Theory 13 (3): 341–360.

[4] Chen, Nai-Fu; Roll, Richard; Ross, Stephen (1986). "Economic Forces and the Stock Market". Journal of Business 59 (3): 383–403.

[5] Fama, Eugene F. and Kenneth R. French. 1993. “Common Risk Factors in the Returns on Stocks and Bonds.” Journal of Financial Economics. 33:1, pp. 3–56.

[6] באופן לא מפתיע, מודל זה מכונה "מודל שלושת הפקטורים" (Three Factor Model).

[7] Carhart, Mark M. 1997. “On Persistence in Mutual Fund Performance.” Journal of Finance. 52:1, pp. 57–82.

[8] Jegadeesh, Narasimhan and Sheridan Titman. 1993. “Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency.” Journal of Finance. 48:1, pp. 65–91.

[10] שימו לב כי הנחת חוסר המתאם מתייחסת לשאריות ולא לתשואות עצמן.

[11] התשואה העודפת על פני התשואה החזויה על פי מודל ה-CAPM מכונה לעיתים "האלפא של ג'נסן", על שם Michael Jensen, שכתב על הנושא בשנת 1968: Jensen, Michael C. 1968. “The Performance of Mutual Funds in the Period 1945–1964.” Journal of Finance. 23:2, pp. 389–416.

[12] למשל, ניתן לטעון כי אלו לא הפקטורים הנוספים שהם בעלי יכולת הסבר לתוחלת התשואה, אלא זה אנחנו שכשלנו בבניית תיק השוק בעת יישום המודל. כלומר, שילוב של הפקטורים הנוספים בסך הכל מהווה "ייצוג" (Proxy) טוב יותר לתיק השוק האמיתי, שאנו לא יודעים מהו, ולכן התוצאות העדיפות.

[13] אם נמתח רווח בר סמך ברמת וודאות של 95%, נקבל כי קו ה-SML התיאורטי איננו שונה באופן מובהק מהקו בפועל. כלומר, ייתכן והמודל נכון, אך האקראיות היא זו שגורמת לאומדנים שלנו להיות שונים מהערכים שהתקבלו בפועל.

כמה מילים על מודל ה-CAPM, חלק א'

אני מאוד אוהב ספרות מימונית. בין אם מדובר במאמר, ספר או פוסט אקראי של דמודרן ודומיו, כמעט תמיד אפשר למצוא בטקסט כלשהו עוד זווית מעניינת על נושאים שלכאורה כבר לא נשאר מה לכתוב עליהם. לאחרונה, יצא לי לחזור ולהתעסק בצדדים התיאורטיים יותר של מודל ה-CAPM, אלה שנידונים לרוב במסגרת קורס תורת ההשקעות של תואר שני, וקצת חרה לי שאין מקום אחד שקיימת בו סקירה טובה ומתומצתת (בעברית) של הספרות המקצועית שפורסמה בנושא החל משנות ה-60. לכן, לקחתי לי כמה שבועות וכתבתי את הסקירה הטובה ביותר שיכולתי על מודל ה-CAPM, הבחינות שנעשו לו ומודלים אלטרנטיביים שקמו לאחריו. ניסיתי שלא להיכנס למתמטיקה המסובכת, אבל צירפתי הפניות לכל המאמרים שמוזכרים כאן, והם לא מעט כפי שתיווכחו בקרוב.

מאז הוצג על-ידי William Sharpe, John Lintner, Jack Treynor & Jan Mossin (הפניה 1) באמצע שנות ה-60, היה מודל ה-CAPM (Capital Asset Pricing Model) למודל הנפוץ ביותר לתמחור נכסים ואף זיכה חלק ממפתחיו בפרס נובל בשנת 1990. המודל נחשב לבסיס בלימודי תורת ההשקעות בכל מוסד אקדמי בשל הפשטות היחסית בה הוא מספק תשובה לשאלה "כמה תשואה אקבל עבור רמת סיכון מסוימת שאני מוכן לקחת על עצמי?". יחד עם זאת, במרוצת השנים קמו לא מעט מחקרים אשר הטילו ספק ביכולתו לאמוד את אותה תשואה מצופה. סדקים ראשונים במודל החלו להיבקע בראשית שנות ה-70, כאשר המודל כשל כשנבחנו התשואות שחזה עבור נכסים מול התשואות שהנכסים ניבו בפועל; לאחר מכן, בשנות ה-80, החלו להתפרסם מחקרים רבים שעסקו בגורמים אחרים בעלי יכולת הסבר לתשואות מלבד תיק השוק. המוכרים שבין אותם גורמים היו רמת המינוף של הפירמה (Bhandari, 1988, הפניה 2), גודלה של הפירמה (Banz, 1981, הפניה 3) והיחס שבין שווי השוק של ההון העצמי של חברה לעומת ערכו בספרים (Stattman, 1980, הפניה 4). מטרתם של שני פוסטים אלו הינה לסקור את המחקרים המרכזיים שנעשו בנושא מאז שפורסם המודל ועד ששכחה ההתלהבות מהעיסוק בו בשנות ה-90 המאוחרות.

מבחנים אמפיריים למודל ה-CAPM, והבעייתיות שבהם

לפני שנדון בתובנות שעלו משורת המאמרים שבחנו את מודל ה-CAPM, ראוי שנסקור את הבעייתיות של המוקדמים שבהם, וכן את המתודולוגיה שבה הם השתמשו. ככלל, המתודולוגיה הקלאסית לבחינה של מודל ה-CAPM כללה שני שלבים. בשלב הראשון, הורצה רגרסיה, שכינויה First Pass Regression, ובה המשתנה המוסבר הינו תשואת המניה והמשתנה המסביר הוא תשואת תיק השוק. הרגרסיה היא מסוג Time Series, שכן וקטור התצפיות כולל את התשואות התקופתיות שהציג תיק השוק לאורך תקופת המדידה, וכן את התשואות התקופתיות שהניבו המניות שנכללו במדגם לאורך אותה התקופה. עבור כל מניה i, שיש בידינו T תשואות היסטוריות שלה ושל תיק השוק, הורצה הרגרסיה הבאה:[5]

r_{i,t}=a_i+b_ir_{m,t}+e_{i,t}

bi, השיפוע של אותה רגרסיה, הוא כמובן האומד לביטא ה"נכונה" של מניה i.

לסיכום, ובהנחה שהמדגם כולל N מניות, השלב הראשון במתודולוגיה בנוי למעשה מהרצה של N רגרסיות, כל רגרסיה עושה שימוש ב-T תצפיות, והתוצר המתקבל הוא N אומדנים לביטאות – אומד אחד עבור כל מניה שנכללה במדגם.

בשלב השני, הורצה רגרסיה מסוג Cross-Sectional, שכינויה Second Pass Regression, ובה המשתנה המוסבר הוא התשואה הממוצעת שהציגה המניה i על פני תקופת המדידה והמשתנה המסביר הוא הביטא שנאמדה בשלב הראשון – bi. כלומר, אנו רוצים לבחון כעת האם הביטא שחושבה בשלב הראשון יכולה להסביר את התשואה הממוצעת שהושגה במהלך אותה תקופה. מספר התצפיות ברגרסיה השנייה הוא N, כמספר המניות שנכללו במדגם.

\bar{r}_i=\gamma_0+\gamma_1b_i+\nu_i

משוואת השלב השני היא למעשה משוואת ה-SML שסקרנו במהלך הפרק, ולכן, אם מודל ה-CAPM מתקיים, הצפי הוא שהאומד לחותך יהיה שווה לתשואה הממוצעת של נכס חסר סיכון לאורך תקופת המדידה והאומד לשיפוע יהיה שווה לפרמיית הסיכון. בלינק הבא תוכלו למצוא קובץ אקסל המדגים את היישום של המתודולוגיה הקלאסית הזו לבחינת מודל ה-CAPM עבור 10 מניות אמריקאיות, כאשר תיק השוק הנבחר הוא מדד ה- S&P 500.

Miller & Scholes (1972) מספקים במאמרם סקירה מקיפה של הבעיות במתודולוגיה הקלאסית, המרכזית שבהן היא בעיית המדידה של הביטא.[7] הביטא הנאמדת בשלב הראשון היא למעשה אומדן של הביטא "האמיתית" של כל מניה; למרות שהאומדן הזה אמור להיות חסר הטיה, עדיין יכולה להיתכן טעות במדידה שלו, וכך, גם אם מודל ה-CAPM מתקיים ולכל מניה אכן קיימת ביטא "נכונה", תוצאות הרגרסיה השנייה יהיה מוטות – החותך, שאמור לייצג את הריבית חסרת הסיכון, יהיה מוטה כלפי מעלה, ואילו השיפוע, שאמור לייצג את פרמיית הסיכון, יהיה מוטה כלפי מטה.[8] ואכן, עד היום, ברובם המכריע של המבחנים הנעשים למודל ה-CAPM, תוצאות הרגרסיה בשלב השני מצביעות על חותך גבוה יותר ושיפוע נמוך יותר מזה המצופה.

הבעיה השנייה שנגרמת כתוצאה מטעות המדידה האפשרית מתקשרת למבחן שביצע Douglas (1968), בו הוא בחן האם יש לשאריות מרגרסיית השלב הראשון יכולת הסבר לתשואת הנכס, בנוסף לביטא שנאמדה בשלב הראשון; כלומר, הוא הוסיף לרגרסיית השלב השני משתנה מסביר נוסף – השאריות מהשלב הראשון.[9] Douglas מצא כי בניגוד לצפי, השאריות מסבירות חלק מהתשואה של השלב השני, והתוצאה הזו מובהקת ברמה של 99%. Miller & Scholes טוענים כי מאחר והביטא האמיתית מתואמת באופן חיובי עם השאריות, אם נכלול את השאריות ברגרסיית השלב השני נקבל כי יש לשאריות מתאם סטטיסטי עם התשואות, אבל רק בגלל שהן "נציגות" של הביטא האמיתית, שאנו לא יודעים מהי והיא איננה נכללת ברגרסיית השלב השני. במילים אחרות, אם היינו מצליחים לכלול את הביטא האמיתית בשלב השני, ולא אומדן שלה, המתאם הסטטיסטי של השאריות עם התשואות היה נעלם. ואכן, כאשר Black, Jensen & Scholes (1972) קיבצו את המניות במדגם שלהם לעשירונים, ובחנו כיצד מודל ה-CAPM מסביר את התשואה העודפת של כל עשירון, נמצא כי התוצאות אכן משביעות רצון, כנראה בגלל שטעות האמידה מהשלב הראשון מתבטלת כאשר מצרפים מספר מניות לקבוצה אחת.[10]

Fama & McBeth (1973) לקחו את השימוש בתיקים צעד אחד רחוק יותר. הם העריכו את ביטת השלב הראשון עבור 20 תיקים, ולאחר מכן הריצו את רגרסיית השלב השני עבור החודש העוקב לתקופת המדידה של רגרסיית השלב הראשון. הם חזרו על התהליך הזה לאורך 1935-1968, כאשר רגרסיית השלב השני שנאמדה הייתה הבאה:

\tilde{R}_{it}=\hat{\gamma}_{ot}+\hat{\gamma}_{1t}\beta_i-\hat{\gamma}_{2t}\beta_i^2+\hat{\gamma}_{3t}S_{ei}+\epsilon_{it}

האמידה של רגרסיית השלב השני עבור כל חודש מאפשרת לבחון לא רק את גודלם של הפרמטרים, אלא גם את התנהגותם על פני תקופת המדידה, מאחר ורגרסיית השלב השני הורצה עבור כל חודש בין ינואר 1935 ועד יוני 1968. על כל פנים, מתודולוגיית המחקר המרכזית הייתה לבדוק האם הערך הממוצע של כל פרמטר שונה באופן מובהק מאפס, כאשר התוצאות המצופות הינן:

  • ישנו מתאם חיובי בין סיכון ותשואה - E(\hat{\gamma}_{1t}) data-recalc-dims=0" />,
  • הקשר בין ביטא והתשואה הינו קשר ליניארי - E(\hat{\gamma}_{2t})=0,
  • השאריות מהשלב הראשון אינן מסבירות את התשואה -  E(\hat{\gamma}_{3t})=0.

נתחיל מההשערה האחרונה. Fama & McBeth מצאו כי לשאריות אין יכולת הסבר לתשואות, כנראה בגלל שטעות המדידה שלהם פחות מהותית מזו של Douglas (1968), עקב השימוש בביטאות של תיקים ולא של מניות בודדות. במילים אחרות, כשהביטא "הנכונה" נמדדת בצורה טובה יותר, השאריות מהרגרסיה הראשונה כבר אינן משחקות תפקיד בהסברת התשואות. תוצאה זו עקבית עם טענתם של Miller & Scholes.

שנית, הם מצאו כי גם לביטא בריבוע אין יכולת הסבר לתשואות, בהתאם למצופה, כלומר היחס בין ביטא ותשואה הוא יחס ליניארי. המסקנה השלישית שלהם היא שממוצע החותכים גדול באופן מובהק משיעור הריבית חסרת הסיכון ושהממוצע של גמא1 (הפרמטר הצמוד לביטא) גדול באופן מובהק מאפס, אך קטן מפרמיית הסיכון ההיסטורית, כלומר, רגרסיית השלב השני שלהם הניבה חותך גבוה ושיפוע נמוך מזה המצופה. כמו-כן, Fama & McBeth בדקו האם לשאריות מרגרסיית השלב השני של תקופה אחת יש יכולת הסבר לתשואה של תקופה עוקבת, ומצאו כי התשובה לכך שלילית, בהתאם להנחות מודל ה-CAPM.

המוני מחקרים שחזרו באופן כזה או אחר את המתודולוגיה של Fama & McBeth לצורך בחינת מודל ה-CAPM, ורובם הגיעו למסקנות דומות. Fama & French (2004) למשל, שחזרו את המתודולוגיה, עם רגרסיית שלב שני בצורתה הקלאסית (כלומר היא כללה רק את הביטא כמשתנה מסביר), עבור כל המניות שנסחרו בבורסה האמריקאית בין השנים 1928-2003.[11] התוצאות שקיבלו היו דומות לתוצאות שקיבלו מחקרים אחרים שנעשו בנושא, ועיקרן הוא SML גבוה ומתון יותר מזה המצופה, כפי שניתן לראות בתרשים הבא:

כך, למשל, התשואה המצופה מהתיק בעל הביטא הנמוכה ביותר היא 8.3% בעוד התשואה בפועל הייתה 11.1%, והתשואה המצופה מהתיק בעל הביטא הגבוהה ביותר היא 16.8% בעוד התשואה בפועל הייתה 13.7%.

מאמרם של Fama & McBeth מהווה אבן דרך בכל הקשור לבחינה אמפירית של מודל ה-CAPM וכמעט כל מאמר שנכתב לאחריו שאב ממנו השראה. לכן, למרות שהספרות המקצועית בנושא ענפה למדי, אנו נסיים כעת את סקירת המבחנים האמפיריים שנעשו ל-CAPM ונפנה לביקורת שנכתבה על אותם מבחנים.

במאמרו פורץ הדרך משנת 1977, כתב Richard Roll את מה שזכה מאז לכינוי Roll's Critique.[12] במרכז המאמר, Roll מביא שתי טענות עיקריות, שהשילוב שלהן שומט למעשה את השטיח שמתחת לרגלי כל המבחנים האמפיריים שנעשו וייעשו למודל ה-CAPM. ראשית, Roll מוכיח כי כאשר תיק השוק בו משתמשים ברגרסיית השלב הראשון הינו תיק יעיל במונחי תוחלת-שונות (כלומר הוא נמצא על המעטפת), רגרסיית השלב השני לעולם תניב תוצאות שעומדות בקנה אחד עם מודל ה-CAPM.[13] לכן, בחינה של מודל ה-CAPM שקולה לבחינה של מידת היעילות של תיק השוק הנבחר. הטענה השנייה של Roll הינה שכל בחינה שכזו היא פחות-או-יותר חסרת כל ערך, מאחר ואין בידינו מידע אודות תיק השוק האמיתי. למשל, מרבית המחקרים עושים שימוש במדד ה-S&P 500 כ"מייצג" (Proxy) של תיק השוק, אבל ברור לכל שהוא איננו כולל את כל הנכסים בעולם, כפי שנדרש מתיק השוק על פי מודל ה-CAPM. לכן, Roll טוען כי כל בחינה שתיעשה למודל ה-CAPM הינה בחינה למידת היעילות של ה-Proxy לתיק השוק, והתוצאות שיתקבלו אינן מעידות על מידת היעילות של תיק השוק האמיתי (ואמיתות ה-CAPM הנובעת ממנה). כלומר, ייתכן וה-Proxy לתיק השוק יימצא יעיל, בעוד שתיק השוק האמיתי איננו יעיל, וייתכן שה-Proxy לתיק השוק יימצא לא יעיל, בעוד שתיק השוק האמיתי דווקא כן. פרופ' אבנר קלעי מאוניברסיטת תל-אביב נוהג לסכם בשיעוריו את נושא זה עם האמרה כי "מאז ועד היום, אנו שרויים בעלטה"; אנו נאמץ השקפה זו, ונפנה כעת אל מודלים אלטרנטיביים שפורסמו בנושא זה.[14]

כעת, לאחר שדיברנו מעט על המבחנים האמפיריים שבוצעו למודל ה-CAPM, ועל הביקורות שנכתבו עליהם, בפוסט הבא אסקור כמה מודלים אלטרנטיביים שפותחו, וחשוב מכך - התובנות העולות מהם.


[1] Lintner, John. 1965. “The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets.” Review of Economics and Statistics. 47:1, pp. 13–37.

Mossin, Jan. "Equilibrium in a Capital Asset Market, "Econometrica,34 (Oct. 1966) pp. 768-784.

Sharpe, William F. 1964. “Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk.” Journal of Finance. 19:3, pp. 425–42.

[2] Bhandari, Laxmi Chand. 1988. “Debt/Equity Ratio and Expected Common Stock Returns: Empirical Evidence.” Journal of Finance. 43:2, pp. 507–28.

[3] Banz, Rolf W. 1981. “The Relationship Between Return and Market Value of Common Stocks.” Journal of Financial Economics. 9:1, pp. 3–18.

[4] Stattman, Dennis. 1980. “Book Values and Stock Returns.” The Chicago MBA: A Journal of Selected Papers. 4, pp. 25–45.

[5] בהמשך נראה כי היו מחקרים בהם המשתנה המסביר היה שונה מתשואת תיק השוק, אך הרעיון הכללי נשאר זהה.

[7] Miller, Merton and Myron Scholes. 1972. “Rates of Return in Relation to Risk: A Reexamination of Some Recent Findings,” in Studies in the Theory of Capital Markets. Michael C. Jensen, ed. New York: Praeger, pp. 47–78.

[8] הוכחה ידידותית לכך ניתן למצוא בספרם של Elton, Gruber, Brown & Goetzmann.

[9]  Douglas, George W. 1968. Risk in the Equity Markets: An Empirical Appraisal of Market Efficiency. Ann Arbor, Michigan: University Microfilms, Inc.

[10] Black, Fischer, Michael C. Jensen and Myron Scholes. 1972. “The Capital Asset Pricing Model: Some Empirical Tests,” in Studies in the Theory of Capital Markets. Michael C. Jensen, ed. New York: Praeger, pp. 79-121.

נציין כי המתודולוגיה של Black, Jensen & Scholes הייתה מעט יותר מתקדמת מהמתודולוגיה הקלאסית שסקרנו קודם לכן.

[11] Fama, Eugene F., and Kenneth R. French. 2004. "The Capital Asset Pricing Model: Theory and Evidence." Journal of Economic Perspectives, 18(3): 25–46.

[12] Roll, Richard (March 1977), "A critique of the asset pricing theory's tests Part I: On past and potential testability of the theory", Journal of Financial Economics 4 (2): 129–176,

[13] תוכלו למצוא הדגמה לכך בקובץ האקסל הבא.

[14] יש לציין כי לא כולם סבורים שמסקנותיו של Roll בעלות השפעה חזקה כל כך על הניסיונות לבחון וליישן את מודל ה-CAPM. ביניהם, ניתן למנות את Eugene Fama ו-Kenneth French, דווקא מגדולי האופוזיציונרים למודל ה-CAPM.

תמחור אופציות ריאליות, חלק ח' ואחרון: סיכום ומספר המלצות פרקטיות

בשבעת הפוסטים האחרונים סקרנו לאורך ולרוחב את שיטת תמחור פרויקטים או חברות באמצעות אופציות ריאליות. לפני שנסכם, נתחיל עם מספר המלצות פרקטיות. מודל ה-ROV נחשב לעדיף מבחינה תיאורטית על פני מודל ה-DTA למטרות תמחור האופציות מכיוון שהוא מתמודד בצורה טובה יותר עם הסיכון הגלום בפרויקטים מורכבים כמו אלה שסקרנו בפרק זה. בפרויקטים כאלה, בהם תזרים המזומנים העתידי תלוי בהחלטות שנקבל על סמך מידע שיתגלה לנו בעתיד, לא ניתן להוון באופן פשוט את תזרים המזומנים באמצעות עלות ההון המשוקללת. המקרה היחידי בו תתקיים התכנסות מלאה בין תוצאות מודל ה-ROV ומודל ה -DTA הוא כאשר הסיכון בפרויקט ניתן לפיזור מלא (כלומר כאשר הסיכון הוא ספציפי לחלוטין). במצב שכזה, כיוון שכאשר הביטא שווה לאפס עלות ההון המשוקללת שווה לשיעור התשואה על נכס חסר סיכון והתוצאות שמתקבלות תחת שתי השיטות זהות.
יחד עם זאת, עליונותו התיאורטית של מודל ה-ROV לא תמיד מתממשת גם בפרקטיקה. שיטת ה-ROV תלויה רבות במחיר נכס הבסיס וסטיית התקן של נכס הבסיס; כאשר ניתן לדלות את שני הפרמטרים הללו משווקים פעילים המלאכה נעשית פשוטה יותר, ופרויקטים בעלי מתאם גבוה עם מחירי הסחורות או האנרגיה הם דוגמה למצב שכזה. כאשר לא ניתן להעריך בצורה איכותית את מחיר נכס הבסיס ו/או את סטיית התקן של נכס הבסיס נעדיף להשתמש בשיטת ה-DTA בשל השקיפות שהיא מספקת לנו בעת קביעת שווי הגמישות. (החלק הקשה יהיה כמובן אמידת ההסתברויות. לשם כך, ניתן להסתמך על מידע היסטורי או מאמרים אקדמיים אמפיריים שעוסקים בענף שאותו אנו מעריכים). אדרבה, בדוגמה האחרונה גילינו כי כאשר הסיכון השיטתי איננו משפיע על ההחלטה שתילקח, אין צורך לקחת אותו בחשבון כאשר אנו מעריכים את שווי הפרויקט. במילים אחרות, העליונות התיאורטית של שיטת ה-ROV נעלמת כאשר הנתונים הדרושים ליישומה אינם ניתנים לאמידה מדויקת, או כאשר הסיכון השיטתי איננו מהותי מספיק. לכן, במרבית המקרים נרצה להתרכז בסוג אחד של סיכון, וההחלטה שנקבל תשפיע על המודל שבו נבחר. קביעת סוג הסיכון העיקרי הגלום בפרויקט איננה משימה פשוטה והיא תלויה רבות בשיקול דעתו של מעריך השווי. למשל, ההצלחה של רישיון קידוח נפט תלויה בגודל המאגר שיתגלה (סיכון ספציפי), אך גם במחירי הנפט שישררו בתום הפיתוח (סיכון שיטתי); כיצד אפוא נבחר לנהוג במצב שכזה? תחת ההנחה שאם גודל המאגר יהיה מספק המחיר העתידי של הנפט יקבל חשיבות משנית, כך שמרבית הסיכון הגלום בפרויקט הוא כזה שניתן לפיזור. במקרים מסוג זה, אנו נעדיף את השימוש בשיטת ה-DTA מאחר והיא מספקת למקבלי ההחלטות תובנות בעלות ערך משמעותי, ללא אובדן רב של דיוק בהערכת שוויו של הפרויקט. התרשים הבא מסכם את המלצותינו בנושא זה:

וכעת, לסיכום.

ישנם פרויקטים ששיטת ה-DCF הסטנדרטית איננה כשירה בכדי לטפל במורכבות המובנית שלהם. פרויקטים בהם מידע חדש צפוי להתקבל במהלך חייהם ולהשפיע על עתידם אינם יכולים להיות מוערכים בשיטת ה-DCF מאחר והיא דורשת את הימצאותו של כל המידע הדרוש כאן ועכשיו. למזלנו, התפתחויות בשוויו של פרויקט והחלטות שמתקבלות במהלכו עונות במדויק על מאפייניהן של אופציות רכש ומכר, כך שניתן להיעזר בידע שנצבר בתחום זה ולהשתית אותו על פרויקטים מורכבים מהסוג שמנינו. זה כמובן לא אומר שעלינו לזנוח לגמרי את שיטת ה-DCF – ראשית, שיטת ה-DCF עובדת נהדר עבור פרויקטים שהם "פרות מזומנים" במהותם, כלומר כאשר בהם מחולל השווי העיקרי מצוי בתזרים המזומנים שיניבו ולא באופציה ריאלית שגלומה בהם. שנית, נקודת המוצא בניתוח אופציה ריאלית היא שווי נכס הבסיס, אותו אנו לרוב נעריך באמצעות שיטת ה-DCF.

הבעיות ביישומה של טכניקת האופציות הריאליות אינן טמונות בבסיסה התיאורטי, אלא ביישומה בפרקטיקה. ראשית, ההתפתחות בשווים של נכס הבסיס, תוספת המימוש וגורמים אחרים לא תמיד תהיה ברורה מאליה – המציאות היא דינמית ולא ניתן לתפוס את כל אי-הוודאות שבה באמצעות מספר פרמטרים ומודל, אלגנטי ככל שיהיה. שנית, המתודולוגיה שסקרנו עד כה התעלמה באלגנטיות משאלה חשובה מאין כמוה: מה קורה כאשר המתחרים בענף מחזיקים גם הם באופציות ריאליות? בענפים בהם קיימים שחקנים רבים ולא קיים שחקן אחד שיכול להשפיע באופן מהותי על עקומות ההיצע והביקוש, השיטות שסקרנו בפרק עדיין יתפסו. בענפים שלא, צריך לקחת בחשבון את האינטראקציה שקיימת בין האופציות של כל שחקן, וכאן הניתוח כבר זולג למחוזותיה של תורת המשחקים.

לא הכל שחור כמובן. ניקח למשל חברה ששוקלת ניסיון חדירה אגרסיבי לערב הסעודית, הכולל הקמת מערכי הפצה, הרחבת קווי הייצור וכו' – מהלך בעל NPV שלילי בשל גודלה הקטן של המדינה. ניסיון החדירה לבדו הוא חסר כל היגיון כלכלי, אבל בהנחה שערב הסעודית מהווה ברומטר לשאר העולם הערבי, הפרויקט טומן בחובו אופציית הרחבה בעלת ערך עצום. כלומר, עצם המודעות לקיומה של הגמישות תורם לנו רבות גם אם אנחנו לא יודעים להעריך בצורה מדויקת את שוויה. פרויקטים מפסידים (אך גמישים) יכולים לטמון בחובם הזדמנויות מעניינות בהמשך הדרך וניתוח מאפייני האופציה הגלומה בהם יכול לספק להנהלת החברה תובנות חשובות מאין כמוהן, בדיוק התובנות המבדילות בין מנהל בינוני למנהל גדול.

כלי חדש הושק: נתונים היסטוריים אודות אג"ח קונצרני

לאחר מחשבון האופציות האמריקאיות ומחשבון האג"ח להמרה, אנו שמחים מאוד לבשר על השקתו של כלי חדש ומגניב לאללה: כלי המספק את כל הנתונים ההיסטוריים האפשריים אודות אגרות חוב קונצרניות!

מהכרותי עם שוק ההון, זהו כלי שהרבה אנשי מקצוע ימצאו כמועיל מאוד, בין אם לצורך הכנת הערכות שווי, ובין אם לצורך מציאת הזדמנויות השקעה. כיום, מסדי נתונים דומים מסופקים בתשלום על ידי ספקי מידע פיננסי בישראל, או נאספים ונאגרים באופן עצמאי על ידי בתי ההשקעות הגדולים. מיותר לציין שהכלי שלנו ניתן בחינם לגמרי, כחלק מתרומתנו לתחום הערכת השווי בארץ.

מאגר הנתונים מתעדכן מדי ערב, באמצעות סקריפט שכתב שגיא אשה הנהדר, ואתם יכולים לסנן ולחפש בו לפי כל החתכים הקיימים בו: שם האגרת, טווח תאריכים, מח"מ, תשואה לפדיון, דירוג וכו'; והכי מגניב: ניתן לייצא את הטבלה המתקבלת לאקסל לצורך ניתוח מתקדם יותר. הנתונים החלו להיאסף ב-6/8, ואנו ננסה להזריק למסד הנתונים מידע ישן יותר.

נשמח לשמוע פידבקים, הצעות, ובעיקר, רעיונות מקוריים לניצול הכלי.

תהנו,

ערן, ניר וטל.